Solving systems of linear equations by substitution answer key

Hotmath

  • Home

Systems of Linear equations:

A system of linear equations is just a set of two or more linear equations.

In two variables ( x and y ) , the graph of a system of two equations is a pair of lines in the plane.

There are three possibilities:

  • The lines intersect at zero points. (The lines are parallel.)
  • The lines intersect at exactly one point. (Most cases.)
  • The lines intersect at infinitely many points. (The two equations represent the same line.)

How to Solve a System Using The Substitution Method

  • Step 1 : First, solve one linear equation for y in terms of x .
  • Step 2 : Then substitute that expression for y in the other linear equation. You'll get an equation in x .
  • Step 3 : Solve this, and you have the x -coordinate of the intersection.
  • Step 4 : Then plug in x to either equation to find the corresponding y -coordinate.

Note 1 : If it's easier, you can start by solving an equation for x in terms of y , also – same difference!

Example:

Solve the system { 3 x + 2 y = 16 7 x + y = 19

    Solve the second equation for y .

    y = 19 − 7 x

    Substitute 19 − 7 x for y in the first equation and solve for x .

    3 x + 2 ( 19 − 7 x ) = 16 3 x + 38 − 14 x = 16 − 11 x = − 22 x = 2

    Substitute 2 for x in y = 19 − 7 x and solve for y .

    y = 19 − 7 ( 2 ) y = 5

    The solution is ( 2 , 5 ) .

Note 2 : If the lines are parallel, your x -terms will cancel in step 2 , and you will get an impossible equation, something like 0 = 3 .

Note 3 : If the two equations represent the same line, everything will cancel in step 2 , and you will get a redundant equation, 0 = 0 .

In our last lesson, we introduced the topic of solving linear systems in two variables. We learned how to solve a linear system using graphing. Although we can obtain a solution using graphing, the method is not very practical. In this lesson, we will focus on another method to solve a linear system known as "substitution". The substitution method is most useful when one of the coefficients for one of the variables is either 1 or -1.

Solving a Linear System using the Substitution Method

  • Solve either equation for one of the variables
    • Look for a variable with a coefficient of 1 or -1
  • Substitute in for the variable in the other equation
    • The result will be a linear equation in one variable
  • Solve the linear equation in one variable
    • This will give us one of our unknowns
  • Plug in for the known variable in either original equation, then solve for the other unknown
  • Check the result
    • Plug in for x and y in each original equation

Let's look at a few examples.
Example 1: Solve each linear system using substitution.
x - 2y = 2
2x - y = -5
First, let's label our equations as equation 1 and equation 2:
1) x - 2y = 2
2) 2x - y = -5
Step 1) Solve either equation for one of the variables, we want to look for a variable with a coefficient of 1 or -1. In this case, we have 1x that appears in equation 1 and -1y that appears in equation 2. Since it's easier, let's solve equation 1 for x.
x - 2y = 2
x = 2y + 2
Step 2) Substitute in for the variable in the other equation.
The key here is to understand the meaning of an equality "=". Since we solved equation 1 for x, we can say that x is equal to or x is the same as the quantity (2y + 2). This means we can plug in (2y + 2) for x in equation 2.
2x - y = -5
2(2y + 2) - y = -5
4y + 4 - y = -5
3y = -9
Step 3) Solve the linear equation in one variable.
3y = -9
y = -3
Step 4) Plug in for the known variable in either original equation. At this point, we know that y is -3. We can plug in a -3 for y in either equation 1 or 2. Let's use equation 1 since it is simpler.
x - 2y = 2
x - 2(-3) = 2
x + 6 = 2
x = -4
Since x is -4 and y is -3, we can write our solution as the ordered pair (-4,-3).
Step 5) Check:
Plug in a -4 for each x and a -3 for each y in the original equations.
x - 2y = 2
-4 - 2(-3) = 2
-4 + 6 = 2
2 = 2
2x - y = -5
2(-4) - (-3) = -5
-8 + 3 = -5
-5 = -5
Example 2: Solve each linear system using substitution.
-8x + y = -4
-4x - 5y = 20
First, let's label our equations as equation 1 and equation 2:
1) -8x + y = -4
2) -4x - 5y = 20
Step 1) Solve either equation for one of the variables, we want to look for a variable with a coefficient of 1 or -1. In this case, we have 1y that appears in equation 1. We will solve equation 1 for y.
-8x + y = -4
y = 8x - 4
Step 2) Substitute in for the variable in the other equation.
The key here is to understand the meaning of an equality "=". Since we solved equation 1 for y, we can say that y is equal to or y is the same as the quantity (8x - 4). This means we can plug in (8x - 4) for y in equation 2.
-4x - 5y = 20
-4x - 5(8x - 4) = 20
-4x - 40x + 20 = 20
-44x = 0
Step 3) Solve the linear equation in one variable.
-44x = 0
x = 0
Step 4) Plug in for the known variable in either original equation. At this point, we know that x is 0. We can plug in a 0 for x in either equation 1 or 2. Let's use equation 1 since it is simpler.
-8x + y = -4
-8(0) + y = -4
0 + y = -4
y = -4
Since x is 0 and y is -4, we can write our solution as the ordered pair (0,-4).
Step 5) Check:
Plug in a 0 for each x and a -4 for each y in the original equations.
-8x + y = -4
-8(0) + (-4) = -4
-4 = -4
-4x - 5y = 20
-4(0) - 5(-4) = 20
20 = 20
Example 3: Solve each linear system using substitution.
8x - 3y = -1
-2x - 5y = -17
First, let's label our equations as equation 1 and equation 2:
1) 8x - 3y = -1
2) -2x - 5y = -17
Step 1) Solve either equation for one of the variables, we want to look for a variable with a coefficient of 1 or -1. In this case, neither equation has a variable with a coefficient of 1 or -1. Let's solve equation 2 for x.
-2x - 5y = -17
-2x = 5y - 17
x = (-5/2)y + 17/2
Step 2) Substitute in for the variable in the other equation.
The key here is to understand the meaning of an equality "=". Since we solved equation 2 for x, we can say that x is equal to or x is the same as the quantity ([-5/2]y + 17/2). This means we can plug in ([-5/2]y + 17/2) for x in equation 1.
8x - 3y = -1
8([-5/2]y + 17/2) - 3y = -1
-20y + 68 - 3y = -1
-23y = -69
Step 3) Solve the linear equation in one variable.
-23y = -69
y = 3
Step 4) Plug in for the known variable in either original equation. At this point, we know that y is 3. We can plug in a 3 for y in either equation 1 or 2. Let's use equation 1 since it is simpler.
8x - 3y = -1
8x - 3(3) = -1
8x - 9 = -1
8x = 8
x = 1
Since x is 1 and y is 3, we can write our solution as the ordered pair (1,3).
Step 5) Check:
Plug in a 1 for each x and a 3 for each y in the original equations.
8x - 3y = -1
8(1) - 3(3) = -1
-1 = -1
-2x - 5y = -17
-2(1) - 5(3) = -17
-17 = -17

Special Case Linear Systems

If both variables drop out when solving a system of linear equations:

  • There is no solution when the remaining statement is false
  • There are infinitely many solutions when the remaining statement is true

Linear Systems with No Solution

In some cases, we will not have a solution for our linear system. This will occur when we have two parallel lines. This type of system is known as an "inconsistent system". If we are solving our system using the substitution method, we will notice that our variables disappear and we are left with a false statement. Let's look at an example.
Example 4: Solve each linear system using substitution.
2x + 7y = -2
-6x - 21y = -6
First, let's label our equations as equation 1 and equation 2:
1) 2x + 7y = -2
2) -6x - 21y = -6
We should notice that the second equation can be made more simple by dividing each side by -3:
2) 2x + 7y = 2
This should immediately flag a problem since the left side of equation 1 and equation 2 are identical and the right sides are not. Let's go through our normal steps.
Step 1) Solve either equation for one of the variables, we want to look for a variable with a coefficient of 1 or -1. In this case, neither equation has a variable with a coefficient of 1 or -1. Let's solve equation 1 for x.
2x + 7y = -2
2x = -7y - 2
x = [-7/2]y - 1
Step 2) Substitute in for the variable in the other equation.
The key here is to understand the meaning of an equality "=". Since we solved equation 1 for x, we can say that x is equal to or x is the same as the quantity ([-7/2]y - 1). This means we can plug in ([-7/2]y - 1) for x in equation 2.
2x + 7y = 2
2([-7/2]y - 1) + 7y = 2
-7y - 2 + 7y = 2
-2 = 2 (false)
Our variable has dropped out and we have a false statement, this tells us we have an "inconsistent system". We will state our answer as "no solution".

Linear Systems with Infinitely Many Solutions

Another special case scenario occurs when the same equation is presented twice as a system of equations. In this case, what works as a solution for one equation works as a solution to the other. These equations are known as "dependent equations". Let's look at an example.
Example 5: Solve each linear system using substitution.
6x - 2y = 34
3x - y = 17
First, let's label our equations as equation 1 and equation 2:
1) 6x - 2y = 34
2) 3x - y = 17
We should be able to notice that multiplying equation 2 by 2 yields equation 1. This means we have the same equation. When you notice this, stop and give the answer of "infinitely many solutions". To see this using the substitution technique, let's use our normal steps.
Step 1) Solve either equation for one of the variables, we want to look for a variable with a coefficient of 1 or -1. In this case, we have -1y that appears in equation 2. We will solve equation 2 for y.
3x - y = 17
-y = -3x + 17
y = 3x - 17
Step 2) Substitute in for the variable in the other equation.
The key here is to understand the meaning of an equality "=". Since we solved equation 2 for y, we can say that y is equal to or y is the same as the quantity (3x - 17). This means we can plug in (3x - 17) for y in equation 1.
6x - 2y = 34
6x - 2(3x - 17) = 34
6x - 6x + 34 = 34
0 = 0 (true)
Our variable has dropped out and we have a true statement, this tells us we have "dependent equations". We will state our answer as "infinitely many solutions".


Skills Check:

Example #1

Solve each system using substitution. $$-46x - 19y=-38$$ $$92x + y=2$$

Please choose the best answer.

Example #2

Solve each system using substitution. $$6x - 8y=0$$ $$-11x + 15y=19$$

Please choose the best answer.

Example #3

Solve each system using substitution. $$27x + 7y=147$$ $$x + y=1$$

Please choose the best answer.

Congrats, Your Score is 100%

Better Luck Next Time, Your Score is %

Try again?

How do you solve an equation with two substitutions?

To solve systems using substitution, follow this procedure:.
Select one equation and solve it for one of its variables..
In the other equation, substitute for the variable just solved..
Solve the new equation..
Substitute the value found into any equation involving both variables and solve for the other variable..

How do you do substitution method?

Substitution Method Steps.
Simplify the given equation by expanding the parenthesis..
Solve one of the equations for either x or y..
Substitute the step 2 solution in the other equation..
Now solve the new equation obtained using elementary arithmetic operations..