What part of the brain causes hallucinations

The language examination should distinguish Wernicke aphasia from the language of delirium. Aphasics have prominent paraphasias of all types, including neologisms, and they have relatively preserved response to axial or whole-body commands. Their agraphia is also empty of content and is paragraphic compared with the mechanical and other writing disturbances previously described in patients with delirium.

The brain regions responsible for hallucinations remain unclear. We studied 89 brain lesions causing hallucinations using a recently validated technique termed lesion network mapping. We found that hallucinations occurred following lesions to a variety of different brain regions, but these lesion locations fell within a single functionally connected brain network. This network was defined by connectivity to the cerebellar vermis, inferior cerebellum (bilateral lobule X), and the right superior temporal sulcus. Within this single hallucination network, additional connections with the lesion location dictated the sensory modality of the hallucination: lesions causing visual hallucinations were connected to the lateral geniculate nucleus in the thalamus while lesions causing auditory hallucinations were connected to the dentate nucleus in the cerebellum. Our results suggest that lesions causing hallucinations localize to a single common brain network, but additional connections within this network dictate the sensory modality, lending insight into the causal neuroanatomical substrate of hallucinations.

Access through your institution

Buy or subscribe

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

  • A depression network caused by brain tumours

    • Yanran Li
    • , Yong Jin
    •  … Lifang Zhang

    Brain Structure and Function Open Access 03 October 2022

  • Using causal methods to map symptoms to brain circuits in neurodevelopment disorders: moving from identifying correlates to developing treatments

    • Alexander Li Cohen

    Journal of Neurodevelopmental Disorders Open Access 12 March 2022

  • Dynamic functional connectivity and its anatomical substrate reveal treatment outcome in first-episode drug-naïve schizophrenia

    • Zhe Zhang
    • , Kaiming Zhuo
    •  … Yu Sun

    Translational Psychiatry Open Access 12 May 2021

Access options

Access through your institution

Access through your institution

Change institution

Buy or subscribe

Subscribe to Journal

Get full journal access for 1 year

111,21 €

only 9,27 € per issue

Subscribe

All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.

Buy article

Get time limited or full article access on ReadCube.

$32.00

Buy

All prices are NET prices.

Additional access options:

  • Log in
  • Learn about institutional subscriptions

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

References

  1. American Psychological Association. APA dictionary of psychology. Washington, DC: American Psychological Association. 2018. //dictionary.apa.org/hallucination.

  2. Aleman A. Hallucinations: the science of idiosyncratic perception. 1st ed. Washington, DC: American Psychological Association; 2008.

  3. Laroi F. The phenomenological diversity of hallucinations: some theoretical and clinical implications. Psychol Belg. 2006;46:163–83.

    Article  Google Scholar 

  4. Clark ML, Waters F, Vatskalis TM, Jablensky A. On the interconnectedness and prognostic value of visual and auditory hallucinations in first-episode psychosis. Eur Psychiatry. 2017;41:122–8.

    Article  CAS  PubMed  Google Scholar 

  5. Barone P, Antonini A, Colosimo C, Marconi R, Morgante L, Avarello TP, et al. The PRIAMO study: a multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Mov Disord. 2009;24:1641–9.

    Article  PubMed  Google Scholar 

  6. Schrag A, Hovris A, Morley D, Quinn N, Jahanshahi M. Caregiver-burden in parkinson’s disease is closely associated with psychiatric symptoms, falls, and disability. Parkinsonism Relat Disord. 2006;12:35–41.

    Article  PubMed  Google Scholar 

  7. Zmigrod L, Garrison JR, Carr J, Simons JS. The neural mechanisms of hallucinations: a quantitative meta-analysis of neuroimaging studies. Neurosci Biobehav Rev. 2016;69:113–23.

    Article  PubMed  Google Scholar 

  8. Asaad G, Shapiro B. Hallucinations: theoretical and clinical overview. Am J Psychiatry. 1986;143:1088–97.

    Article  CAS  PubMed  Google Scholar 

  9. David AS. The cognitive neuropsychiatry of auditory verbal hallucinations: an overview. Cogn Neuropsychiatry. 2004;9:107–23.

    Article  PubMed  Google Scholar 

  10. Allen P, Laroi F, McGuire PK, Aleman A. The hallucinating brain: a review of structural and functional neuroimaging studies of hallucinations. Neurosci Biobehav Rev. 2008;32:175–91.

    Article  PubMed  Google Scholar 

  11. Jardri R, Thomas P, Delmaire C, Delion P, Pins D. The neurodynamic organization of modality-dependent hallucinations. Cereb Cortex. 2013;23:1108–17.

    Article  PubMed  Google Scholar 

  12. Rolland B, Amad A, Poulet E, Bordet R, Vignaud A, Bation R, et al. Resting-state functional connectivity of the nucleus accumbens in auditory and visual hallucinations in schizophrenia. Schizophr Bull. 2015;41:291–9.

    Article  PubMed  Google Scholar 

  13. Garrison JR, Fernyhough C, McCarthy-Jones S, Haggard M, Simons JS. Paracingulate sulcus morphology is associated with hallucinations in the human brain. Nat Commun. 2015;6:8956.

    Article  CAS  PubMed  Google Scholar 

  14. Jardri R, Pouchet A, Pins D, Thomas P. Cortical activations during auditory verbal hallucinations in schizophrenia: a coordinate-based meta-analysis. Am J Psychiatry. 2011;168:73–81.

    Article  PubMed  Google Scholar 

  15. Braun CM, Dumont M, Duval J, Hamel-Hebert I, Godbout L. Brain modules of hallucination: an analysis of multiple patients with brain lesions. J Psychiatry Neurosci. 2003;28:432–49.

    PubMed  PubMed Central  Google Scholar 

  16. Fox MD. Mapping symptoms to brain networks with the human connectome. N Engl J Med. 2018;379:2237–45.

    Article  CAS  PubMed  Google Scholar 

  17. Karnath HO, Sperber C, Rorden C. Mapping human brain lesions and their functional consequences. Neuroimage. 2018;165:180–9.

    Article  CAS  PubMed  Google Scholar 

  18. Adolphs R. Human lesion studies in the 21st century. Neuron. 2016;90:1151–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morenas-Rodriguez E, Camps-Renom P, Perez-Cordon A, Horta-Barba A, Simon-Talero M, Cortes-Vicente E, et al. Visual hallucinations in patients with acute stroke: a prospective exploratory study. Eur J Neurol. 2017;24:734–40.

    Article  CAS  PubMed  Google Scholar 

  20. Boes AD, Prasad S, Liu H, Liu Q, Pascual-Leone A, Caviness VS Jr., et al. Network localization of neurological symptoms from focal brain lesions. Brain. 2015;138(Pt 10):3061–75.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Carrera E, Tononi G. Diaschisis: past, present, future. Brain. 2014;137(Pt 9):2408–22.

    Article  PubMed  Google Scholar 

  22. Fox MD, Buckner RL, Liu H, Chakravarty MM, Lozano AM, Pascual-Leone A. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proc Natl Acad Sci USA. 2014;111:E4367–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Horn A, Reich M, Vorwerk J, Li N, Wenzel G, Fang Q, et al. Connectivity predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol. 2017;82:67–78.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Weigand A, Horn A, Caballero R, Cooke D, Stern AP, Taylor SF, et al. Prospective nMagnetic stimulation sites. Biol Psychiatry. 2018;84:28–37.

    Article  CAS  PubMed  Google Scholar 

  25. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264–9.

    Article  PubMed  Google Scholar 

  26. Darby RR, Laganiere S, Pascual-Leone A, Prasad S, Fox MD. Finding the imposter: brain connectivity of lesions causing delusional misidentifications. Brain. 2016;140:497–507.

    Article  PubMed Central  Google Scholar 

  27. Corp DT, Joutsa J, Darby RR, Delnooz CCS, van de Warrenburg BPC, Cooke D, et al. Network localization of cervical dystonia based on causal brain lesions. Brain. 2019;142:1660–74.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Darby RR, Horn A, Cushman F, Fox MD. Lesion network localization of criminal behavior. Proc Natl Acad Sci USA. 2018;115:601–6.

    Article  CAS  PubMed  Google Scholar 

  29. Darby RR, Joutsa J, Burke MJ, Fox MD. Lesion network localization of free will. Proc Natl Acad Sci USA. 2018;115:10792–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Joutsa J, Horn A, Hsu J, Fox MD. Localizing parkinsonism based on focal brain lesions. Brain. 2018;141:2445–56.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Joutsa J, Shih LC, Horn A, Reich MM, Wu O, Rost NS, et al. Identifying therapeutic targets from spontaneous beneficial brain lesions. Ann Neurol. 2018;84:153–7.

    Article  PubMed  Google Scholar 

  32. Wu O, Cloonan L, Mocking SJ, Bouts MJ, Copen WA, Cougo-Pinto PT, et al. Role of acute lesion topography in initial ischemic stroke severity and long-term functional outcomes. Stroke. 2015;46:2438–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Powers AR, Mathys C, Corlett P. Pavlovian conditioning–induced hallucinations result from overweighting of perceptual priors. Science. 2017;357:596–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ffytche DH. The hodology of hallucinations. Cortex. 2008;44:1067–83.

    Article  PubMed  Google Scholar 

  35. Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7:511–22.

    Article  CAS  PubMed  Google Scholar 

  36. Andreasen NC, Pierson R. The role of the cerebellum in schizophrenia. Biol Psychiatry. 2008;64:81–8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16:367–78.

    Article  PubMed  Google Scholar 

  38. Okugawa G, Sedvall GC, Agartz I. Smaller cerebellar vermis but not hemisphere volumes in patients with chronic schizophrenia. Am J Psychiatry. 2003;160:1614–7.

    Article  PubMed  Google Scholar 

  39. Park HS, KIm BS, Kim YK, Yang YS, Cho SS, Kim SY, et al. Different cerebral metabolic features in dementia with Lewy bodies with/without visual hallucination. J Nucl Med. 2008;49(supplement 1):36P–P.

    Google Scholar 

  40. Pagonabarraga J, Soriano-Mas C, Llebaria G, Lopez-Sola M, Pujol J, Kulisevsky J. Neural correlates of minor hallucinations in non-demented patients with Parkinson’s disease. Parkinsonism Relat Disord. 2014;20:290–6.

    Article  PubMed  Google Scholar 

  41. McAuley T, Brahmbhatt S, Barch DM. Performance on an episodic encoding task yields further insight into functional brain development. Neuroimage. 2007;34:815–26.

    Article  PubMed  Google Scholar 

  42. Mesulam MM. From sensation to cognition. Brain. 1998;121(Pt 6):1013–52.

    Article  PubMed  Google Scholar 

  43. Jones E, Powell T. An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain. 1970;93:793–820.

    Article  CAS  PubMed  Google Scholar 

  44. Beauchamp MS, Lee KE, Argall BD, Martin A. Integration of auditory and visual information about objects in superior temporal sulcus. Neuron. 2004;41:809–23.

    Article  CAS  PubMed  Google Scholar 

  45. Santhouse AM, Howard RJ, ffytche DH. Visual hallucinatory syndromes and the anatomy of the visual brain. Brain. 2000;123:2055–64.

    Article  PubMed  Google Scholar 

  46. Friston KJ. Hallucinations and perceptual inference. Behav Brain Sci. 2005;28:764–6.

    Article  Google Scholar 

  47. Rajesh PNR, Dana HB. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci. 1999;2:79.

    Article  Google Scholar 

  48. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Palaniyappan L, Mallikarjun P, Joseph V, White TP, Liddle PF. Reality distortion is related to the structure of the salience network in schizophrenia. Psychol Med. 2011;41:1701–8.

    Article  CAS  PubMed  Google Scholar 

  50. White TP, Joseph V, Francis ST, Liddle PF. Aberrant salience network (bilateral insula and anterior cingulate cortex) connectivity during information processing in schizophrenia. Schizophr Res. 2010;123:105–15.

    Article  PubMed  Google Scholar 

  51. Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15:483–506.

    Article  PubMed  Google Scholar 

  52. Jones EG. The Thalamus. New York: Plenum Press; 1985.

  53. Manford M, Andermann F. Complex visual hallucinations. Clin neurobiological insights Brain. 1998;121(Pt 10):1819.

    Google Scholar 

  54. Geddes MR, Tie Y, Gabrieli JD, McGinnis SM, Golby AJ, Whitfield-Gabrieli S. Altered functional connectivity in lesional peduncular hallucinosis with REM sleep behavior disorder. Cortex. 2016;74:96–106.

    Article  PubMed  Google Scholar 

  55. Weil RS, Hsu JK, Darby RR, Soussand L, Fox MD. Neuroimaging in Parkinson’s disease dementia: connecting the dots. Brain Commun. 2019;1. //doi.org/10.1093/braincomms/fcz006. [Epub ahead of print].

  56. Leiner HC, Leiner AL, Dow RS. Cognitive and language functions of the human cerebellum. Trends Neurosci. 1993;16:444–7.

    Article  CAS  PubMed  Google Scholar 

  57. Kotz SA, Schwartze M. Cortical speech processing unplugged: a timely subcortico-cortical framework. Trends Cogn Sci. 2010;14:392–9.

    Article  PubMed  Google Scholar 

  58. Thürling M, Küper M, Stefanescu R, Maderwald S, Gizewski E, Ladd ME, et al. Activation of the dentate nucleus in a verb generation task: a 7 T MRI study. Neuroimage. 2011;57:1184–91.

    Article  PubMed  Google Scholar 

  59. Curcic-Blake B, Ford JM, Hubl D, Orlov ND, Sommer IE, Waters F, et al. Interaction of language, auditory and memory brain networks in auditory verbal hallucinations. Prog Neurobiol. 2017;148:1–20.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cheng DT, Meintjes EM, Stanton ME, Desmond JE, Pienaar M, Dodge NC, et al. Functional MRI of cerebellar activity during eyeblink classical conditioning in children and adults. Hum Brain Mapp. 2014;35:1390–403.

    Article  PubMed  Google Scholar 

  61. Ffytche DH, Howard RJ, Brammer MJ, David A, Woodruff P, Williams S. The anatomy of conscious vision: an fMRI study of visual hallucinations. Nat Neurosci. 1998;1:738–42.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang S, Xu M, Kamigaki T, Hoang Do JP, Chang WC, Jenvay S, et al. Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing. Science. 2014;345:660–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hirsch JA, Wang X, Sommer FT, Martinez LM. How inhibitory circuits in the thalamus serve vision. Annu Rev Neurosci. 2015;38:309–29.

    Article  CAS  PubMed  Google Scholar 

  64. Carcea I, Froemke RC. Cortical plasticity, excitatory-inhibitory balance, and sensory perception. Prog Brain Res. 2013;207:65–90.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jardri R, Hugdahl K, Hughes M, Brunelin J, Waters F, Alderson-Day B, et al. Are hallucinations due to an imbalance between excitatory and inhibitory influences on the brain? Schizophr Bull. 2016;42:1124–34.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lee I, Nielsen K, Nawaz U, Hall MH, Ongur D, Keshavan M, et al. Diverse pathophysiological processes converge on network disruption in mania. J Affect Disord. 2019;244:115–23.

    Article  PubMed  Google Scholar 

  67. Waters F, Fernyhough C. Hallucinations: a systematic review of points of similarity and difference across diagnostic classes. Schizophr Bull. 2017;43:32–43.

    Article  PubMed  Google Scholar 

  68. Padmanabhan JL, Cooke D, Joutsa J, Siddiqi SH, Ferguson M, Darby RR, et al. A human depression circuit derived from focal brain lesions. Biol Psychiatry. 2019. //doi.org/10.1016/j.biopsych.2019.07.023.

  69. Orlov ND, Giampietro V, O’Daly O, Lam SL, Barker GJ, Rubia K, et al. Real-time fMRI neurofeedback to down-regulate superior temporal gyrus activity in patients with schizophrenia and auditory hallucinations: a proof-of-concept study. Transl Psychiatry. 2018;8:46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Slotema CW, Blom JD, van Lutterveld R, Hoek HW, Sommer IE. Review of the efficacy of transcranial magnetic stimulation for auditory verbal hallucinations. Biol Psychiatry. 2014;76:101–10.

    Article  PubMed  Google Scholar 

  71. Merabet LB, Kobayashi M, Barton J, Pascual-Leone A. Suppression of complex visual hallucinatory experiences by occipital transcranial magnetic stimulation: a case report. Neurocase. 2003;9:436–40.

    Article  PubMed  Google Scholar 

  72. Bürgel U, Amunts K, Hoemke L, Mohlberg H, Gilsbach JM, Zilles K. White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability. Neuroimage. 2006;29:1092–105.

    Article  PubMed  Google Scholar 

  73. Diedrichsen J, Maderwald S, Küper M, Thürling M, Rabe K, Gizewski E, et al. Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. Neuroimage. 2011;54:1786–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

DT was supported by a DuPont-Warren Fellowship Award from Harvard Medical School. JJ was supported by funding from the Academy of Finland #295580, the Finnish Medical Foundation, and a grant from the Orion Research Foundation. JMF was supported by RETICS INVICTUS PLUS (RD06/0019/0010) and FEDER. MDF was supported by the National Institute of Mental Health (R01MH113929), Nancy Lurie Marks Foundation, and Mathers Foundation. None of the institutions mentioned above have a role in the design and conduct of the study, in the collection, management, analysis, and interpretation of the data, in the preparation, review, or approval of the manuscript, nor in the decision to submit the manuscript for publication.

Author information

Authors and Affiliations

  1. Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea

    Na Young Kim

  2. Berenson-Allen Center for Non-Invasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA

    Na Young Kim, Joey Hsu, Juho Joutsa, Louis Soussand, Alvaro Pascual-Leone & Michael D. Fox

  3. Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA

    Daniel Talmasov

  4. Department of Neurology, New York University School of Medicine, New York, NY, USA

    Daniel Talmasov

  5. Turku Brain and Mind Center, Department of Neurology, University of Turku, Turku, Finland

    Juho Joutsa

  6. Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland

    Juho Joutsa

  7. Athinoula A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA

    Ona Wu & Michael D. Fox

  8. J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA

    Natalia S. Rost

  9. Department of Neurology, Biomedical Research Institute (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau (HSCSP), Universidad Autónoma de Barcelona, Barcelona, Spain

    Estrella Morenas-Rodríguez & Joan Martí-Fàbregas

  10. German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany

    Estrella Morenas-Rodríguez

  11. Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany

    Estrella Morenas-Rodríguez

  12. Institut Guttmann de Neurorehabilitació, Universitat Autonoma de Barcelona, Badalona, Spain

    Alvaro Pascual-Leone

  13. Department of Psychiatry, Clinical Neuroscience Research Unit, Connecticut Mental Health Center, Yale University School of Medicine, New Haven, CT, USA

    Philip R. Corlett

Authors

  1. Na Young Kim

    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Joey Hsu

    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Daniel Talmasov

    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Juho Joutsa

    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Louis Soussand

    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Ona Wu

    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Natalia S. Rost

    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Estrella Morenas-Rodríguez

    View author publications

    You can also search for this author in PubMed Google Scholar

  9. Joan Martí-Fàbregas

    View author publications

    You can also search for this author in PubMed Google Scholar

  10. Alvaro Pascual-Leone

    View author publications

    You can also search for this author in PubMed Google Scholar

  11. Philip R. Corlett

    View author publications

    You can also search for this author in PubMed Google Scholar

  12. Michael D. Fox

    View author publications

    You can also search for this author in PubMed Google Scholar

Contributions

NYK, JH, and MDF conceived and designed the work; NYK, JJ, OW, NR, EMR, and JMF acquired the data; NYK, JH, JJ, LS, APL, and MDF analyzed and interpreted data; NYK, DT, and MDF drafted the work; PRC, APL, and MDF revised the manuscript critically for important intellectual content; all authors approved the final version to be published and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. NYK and MDF had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding authors

Correspondence to Na Young Kim or Michael D. Fox.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, N.Y., Hsu, J., Talmasov, D. et al. Lesions causing hallucinations localize to one common brain network. Mol Psychiatry 26, 1299–1309 (2021). //doi.org/10.1038/s41380-019-0565-3

What part of the brain controls visual hallucinations?

Visual hallucinations were associated with reduced volume in bilateral occipital regions, right supramarginal gyrus and left fusiform gyrus, bilateral dorsolateral prefrontal cortex, frontal pole and the middle portion of the left cingulate gyrus.

What brain problems cause hallucinations?

Common Causes of Hallucinations.
Schizophrenia. More than 70% of people with this illness get visual hallucinations, and 60%-90% hear voices. ... .
Parkinson's disease. ... .
Alzheimer's disease. ... .
Migraines. ... .
Brain tumor. ... .
Charles Bonnet syndrome. ... .
Epilepsy..

What part of the brain causes hallucinations in schizophrenia?

In schizophrenia, the right superior temporal region has repeatedly been associated with hallucinations in anatomical and functional brain imaging studies.

What part of the brain causes delusions and hallucinations?

Delusions result from right hemisphere lesions, but it is the left hemisphere that is deluded." Often bizarre in content and held with absolute certainty, delusions are pathologic beliefs that remain fixed despite clear evidence that they are incorrect.

Toplist

Latest post

TAGs